Theory-guided hard constraint projection (HCP): A knowledge-based data-driven scientific machine learning method

نویسندگان

چکیده

Machine learning models have been successfully used in many scientific and engineering fields. However, it remains difficult for a model to simultaneously utilize domain knowledge experimental observation data. The application of knowledge-based symbolic AI represented by an expert system is limited the expressive ability model, data-driven connectionism neural networks prone produce predictions that violate physical mechanisms. In order fully integrate with observations, make full use prior information strong fitting networks, this study proposes theory-guided hard constraint projection (HCP). This converts constraints, such as governing equations, into form easy handle through discretization, then implements optimization projection. Based on rigorous mathematical proofs, HCP can ensure strictly conform mechanisms patch. performance verified experiments based heterogeneous subsurface flow problem. Due compared connected soft models, physics-informed requires fewer data, achieves higher prediction accuracy stronger robustness noisy observations.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Theory-Guided Machine Learning in Materials Science

Materials scientists are increasingly adopting the use of machine learning tools to discover hidden trends in data and make predictions. Applying concepts from data science without foreknowledge of their limitations and the unique qualities of materials data, however, could lead to errant conclusions. The differences that exist between various kinds of experimental and calculated data require c...

متن کامل

A knowledge-based, data-driven method for action-sound mapping

This paper presents a knowledge-based, data-driven method for using data describing action-sound couplings collected from a group of people to generate multiple complex mappings between the performance movements of a musician and sound synthesis. This is done by using a database of multimodal motion data collected from multiple subjects coupled with sound synthesis parameters. A series of sound...

متن کامل

Concordance-Based Data-Driven Learning Activities and Learning English Phrasal Verbs in EFL Classrooms

In spite of the highly beneficial applications of corpus linguistics in language pedagogy, it has not found its way into mainstream EFL. The major reasons seem to be the teachers’ lack of training and the unavailability of resources, especially computers in language classes. Phrasal verbs have been shown to be a problematic area of learning English as a foreign language due to their semantic op...

متن کامل

Enhancing Learning from Imbalanced Classes via Data Preprocessing: A Data-Driven Application in Metabolomics Data Mining

This paper presents a data mining application in metabolomics. It aims at building an enhanced machine learning classifier that can be used for diagnosing cachexia syndrome and identifying its involved biomarkers. To achieve this goal, a data-driven analysis is carried out using a public dataset consisting of 1H-NMR metabolite profile. This dataset suffers from the problem of imbalanced classes...

متن کامل

Data-Driven Constraint-Based Motion Editing

The growth of motion capture systems has contributed to the proliferation of human motion database, mainly because human motion is important in many applications, ranging from games entertainment and films to sports and medicine. However, the various captured motions normally require specific needs. Consequently, modifying and reusing these motions in new situations for example, retargeting it ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational Physics

سال: 2021

ISSN: ['1090-2716', '0021-9991']

DOI: https://doi.org/10.1016/j.jcp.2021.110624